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Background



Review: Constant Time (CT) Programming

● Programming principles designed to mitigate side channel attacks and protect 

secret information

● 2 types of violations: secret-dependent branches (line 3), and secret-

dependent memory accesses (line 4)

1. int insecure_demo(int pub1, int* pub2, int secret) {

2. if (pub1 > 0) {

3. if (pub1 < 10 && secret > 0) {

4. return pub2[secret];

5. }

6. }

7. return -1;

8. }



Review: CtChecker1

● Programs can be deceptively difficult to write and verify as constant-time

● CtChecker: program analysis tool, finds CT-violations with few false negatives

● Reports line number of potential vulnerability;

unhelpful for confirming and fixing leaks

[1] Zhou, Quan, Sixuan Dang, and Danfeng Zhang. "CtChecker: A Precise, Sound and Efficient Static Analysis for Constant-Time Programming." (ECOOP 2024). 



Review: Symbolic Execution

● Program inputs are treated as 

symbolic variables, not concrete 

values.

● The program is executed along 

all feasible paths, building 

conditions (path constraints) for 

each.

● A solver (like Z3) is used to 

check which paths are possible 

and find inputs that trigger them.

Image: Haj-Yahya, Jawad & Ben-asher, Yosi. (2018). Software Static Energy Modeling for Modern Processors. International Journal of Parallel Programming. 46.



Project Objective

● Use symbolic execution (SE) to find counterexamples of CT violations

● Focus on secret-dependent branches

● Counterexample: pair of inputs with different execution paths

where only secret inputs differ

○ (pub1, …, pubn; sec1
a, …, secm

a)

○ (pub1, …, pubn; sec1
b, …, secm

b)

● Challenge: efficient modeling of side channels in SE



Design/Implementation



KLEE overview

● KLEE: popular open-source symbolic execution engine

● Explores feasible program paths by treating inputs as symbolic 

variables

● Operates on LLVM bitcode, an intermediate representation of the 

source level and machine-specific assembly

● Primary use in automatic test generation, producing concrete inputs 

that follow a particular path



Approach #1: Self-Composition

// Symbolically run code below using KLEE

void self_composition() {

symbolic int pub, sec1, sec2;

//augmented to record branch history

target_func(pub, sec1, run=1);

target_func(pub, sec2, run=2);

assert(branch_histories_equal());

}

Advantages:

● Simple to implement

● Easily expandable to memory 

accesses

● Takes advantage of built-in KLEE 

search heuristics

Disadvantages:

● Requires exploring two full 

executions per counterexample;

suffers from path explosion



Approach #2: Product Programs

● Check whether a branch is secret-dependent when it’s encountered

(Does not need to wait until the end of a complete execution!)

● For branch condition cond(pub1, …, pubn; sec1, …, secm),

create two copies with secret variables renamed:

○ conda(pub1, …, pubn; sec1
a, …, secm

a)

○ condb(pub1, …, pubn; sec1
b, …, secm

b)

● Check if it is possible for the branch to diverge with the same public variables 

but different secret variables

○ solve[pub1, …, pubn; sec1
a, …, secm

a; sec1
b, …, secm

b]

(path_cond ∧ conda ∧ ¬condb)



Approach #2: Product Programs

1. int insecure_demo(int pub1, int* pub2, int secret) {

2. if (pub1 > 0) {

3. if (pub1 < 10 && secret > 0) {

4. return pub2[secret];

5. }

6. }

7. return -1;

8. }

Path Condition:
pub1 > 0

Solve:
pub1 > 0
&& (pub1 < 10 && secreta > 0)
&& !(pub1 < 10 && secretb > 0)

Counterexample:

pub1 == 1
&& secreta == 1
&& secretb == 0



Optimization: Concretization

● Issue: solver timeout on complex constraints

(usually after adding a complex branch condition)

● Solution: concretize all symbolic variables to one set of fixed values

when this happens

● Limitation: can only go down one path afterwards

○ Future improvements: concretize only some of the symbolic variables or 

concretize to multiple sets of values (concolic execution)



Optimization: Concretization

1. int insecure_demo(int pub1, int* pub2, int secret) {

2. if (pub1 > 0) {

3. if (pub1 < 10 && secret > 0) {

4. return pub2[secret];

5. }

6. }

7. return -1;

8. }

Path Condition:
pub1 > 0

Execution continues 
in one path

Concretization:

pub1 == 1
&& secret == 1



Results/Discussion



Counterexamples from CtChecker

● PP-TP: true positives confirmed by product program/found by CtChecker
● PP-FP: false positives visited by product program/found by CtChecker
● SC: number of divergent path pairs with concrete public and symbolic secret
● Fairly effective on mbedTLS (smaller), struggles with Libgcrypt (larger)

PP-TP (Confirmed/Found) PP-FP (Visited/Found) SC

BearSSL 0.6 0/0 3/3 0

mbedTLS 3.2.1 3/4 17/26 2

Libgcrypt 1.10.1 0/6 8/26 N/A

● CPU: Intel(R) Xeon(R) Platinum 8352Y @ 2.20GHz

● Command: klee --max-tests=64 --max-solver-time=10s  --libc=uclibc --posix-runtime

● Running time: 7 hours



Limitations

Symbolic Execution:

● Path explosion

● Solver timeouts

● Difficulty modelling external calls

Cryptographic Libraries:

● Individual bit logic, bignums

● Libgcrypt, openssl, etc. 

are much larger codebases



Future Work



Scalability Improvements

● Search heuristics: guide the exploration of paths towards target branches

● Solve constraints with different solvers simultaneously (e.g. STP + Z3)

● Program slicing: remove parts of the program irrelevant to target branches

1. a = 5;

2. b = a + a;

3. if (b > 0) {

4. c = a;

5. }

6. d = b;

1. a = 5;

2. b = a + a;

3. d = b;

Slice criteria (6, b)



Extensions and Applications

-Generalize input generation to 

include memory-access-based 

time violations

-applications in 

quantifying/bounding leakage 

of side channel vulnerabilities

if (secret % 2 == 0) {

return 1;

} else {

return 0;

}

int ret = 0;

for (int i = 0; i < 32; i++) {

if ((secret >> i) & 1) {

ret++;

} else {

continue;

}

}

return ret;

Leaks 1 bit of secret

Leaks all of secret



Summary

● CtChecker automatically finds security vulnerabilities, but without showing 

how they occur

● Augment KLEE, a symbolic execution engine, to produce concrete inputs that 

trigger secret-dependent control flow

● When encountering branch, see if both sides are simultaneously reachable 

while keeping public inputs fixed

● Effectively finds most true positives on smaller cryptographic libraries; issues 

with scalability

● To-do: parallelize constraint solvers, implement program slicing
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