Automated Counterexample
Generation for Side Channels

By: Jameson DiPalma, Yuxiang Lin



Overview:

1. Background
2. Design/Implementation

3. Results/Discussion
4. Future Work



Background



Review: Constant Time (CT) Programming

e Programming principles designed to mitigate side channel attacks and protect
secret information

e 2 types of violations: secret-dependent branches (line 3), and secret-
dependent memory accesses (line 4)

1. int insecure_demo(int publ, int* pub2, int secret) {
2 if (publ > @) {

3 if (publ < 10 && secret > 0) {

4. return pub2[secret];

5 }

6 }

7. return -1;

8. }




Review: CtChecker!

e Programs can be deceptively difficult to write and verify as constant-time
e CtChecker: program analysis tool, finds CT-violations with few false negatives
e Reports line number of potential vulnerability;

unhelpful for confirming and fixing leaks

library/bignum.c line 238 - if( Y-»p[i] !=@ ) library/bignum.c line 1248 - for( ; n < X->n & X->p[n] == 0; n++ )
library/bignum.c line 365 - if( x & mask ) break; library/bignum.c line 1472 - while( n > © & A->p[n - 1] == 0 )
library/bignum.c line 384 - if( X-»p[i] !=@ ) library/bignum.c line 1476 - if( b==0 || n==0 )

library/bignum.c line 1045 - if( X-»>p[i - 1] !=@ ) library/bignum.c line 1520 - if( @ ==d || ul >=d )

library/bignum.c line 1049 - if( Y-»>p[j - 1] != 9 ) library/bignum.c line 1520 - if( @ ==d || ul >=d )

library/bignum.c line 1060 - if( X-»>p[i - 1] » Y-»>p[i - 1] ) return( 1 ); library/bignum.c line 1531 - if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1)
library/bignum.c line 1861 - if( X-»>p[i - 1] < Y-»>p[i - 1] ) return( -1 ); library/bignum.c line 1662 - if( X.p[i] >= Y.p[t] )

library/bignum.c line 1877 - if( X-»>p[i - 1] != @ ) library/bignum.c line 1985 - if( mbedtls _mpi_cmp_int( N, @ ) <= @ || ( N->p[@] & 1 ) == 0 )
library/bignum.c line 1081 - if( Y-»>p[j - 1] != @ ) library/bignum.c line 2125 - if( ei == @ &% state == 0 )

library/bignum.c line 1095 - if( X-»>p[i - 1] > Y->p[i - 1] ) return( X->s ); library/bignum.c line 2128 - if( ei == 0 && state == 1 )

library/bignum.c line 1896 - if( X-»>p[i - 1] < ¥Y-»>p[i - 1] ) return( -X->s ); library/bignum.c line 2174 - if( ( wbits & ( one << wsize ) ) !=0 )
library/bignum.c line 1145 - if( B->p[j - 1] != @ ) library/bignum.c line 2183 - if( neg && E->n != 0 & ( E->p[@0] & 1 ) =0 )
library/bignum.c line 1162 - while( ¢ != 8 ) library/bignum.c line 1399 - *d += c; ¢ = ( *d < ¢ ); d++;

library/bignum.c line 1225 - if( B->p[n - 1] !=@ ) library/bignum.c line 1399 - *d += c; ¢ = ( *d < c ); d++;

library/bignum.c line 1245 - if( carry != @ ) library/bignum.c line 1399 - *d += c; ¢ = ( *d < c ); d++;

[1] Zhou, Quan, Sixuan Dang, and Danfeng Zhang. "CtChecker: A Precise, Sound and Efficient Static Analysis for Constant-Time Programming." (ECOOP 2024).



Review: Symbolic Execution

. Example Code Infinite symbolic execution tree
e Program inputs are treated as —

) ) void test(int n) { ns
symbolic variables, not concrete int x = 0; Petrue
values. while(x <) |

X=X+ 1; n:s,x:0
e The program is executed along } Peinue
all feasible paths, building p— sxo.
conditions (path constraints) for pc”‘f
each. o
e A solver (like Z3) is used to ‘
check which paths are possible Peioes A 1¢5 beioes A 15-s
and find inputs that trigger them. |

Image: Haj-Yahya, Jawad & Ben-asher, Yosi. (2018). Software Static Energy Modeling for Modern Processors. International Journal of Parallel Programming. 46.



Project Objective

e Use symbolic execution (SE) to find counterexamples of CT violations

e Focus on secret-dependent branches
e Counterexample: pair of inputs with different execution paths
where only secret inputs differ
o (puby, .., pub,; sec,?, .., sec,?)
o (puby, .., pub,; sec,’, .., sec,?)
e Challenge: efficient modeling of side channels in SE



Design/Implementation



KLEE overview

e KLEE: popular open-source symbolic execution engine
e Explores feasible program paths by treating inputs as symbolic

variables

e Operates on LLVM bitcode, an intermediate representation of the
source level and machine-specific assembly

e Primary use in automatic test generation, producing concrete inputs
that follow a particular path



Approach #1: Self-Composition

Advantages:
® Simple to implement
® Easily expandable to memory

// Symbolically run code below using KLEE
void self composition() {
symbolic int pub, secl, sec2;

accesses
//augmented to record branch history ® Takes advantage of built-in KLEE
target func(pub, secl, run=1); search heuristics
target func(pub, sec2, run=2); Disadvantages:

® Requires exploring two full
executions per counterexample;
suffers from path explosion

assert(branch_histories_equal());




Approach #2: Product Programs

e Check whether a branch is secret-dependent when it’s encountered
(Does not need to wait until the end of a complete execution!)
e For branch condition cond(pub,, .., pub,; sec;, .., sec,),
create two copies with secret variables renamed:
o cond3®(pub;, .., pub,; sec.®, .., sec,?)
o cond®(pub,, .., pub,; sec,?, .., sec,)
e Check ifitis possible for the branch to diverge with the same public variables
but different secret variables
o solve[pub,, .., pub,; sec,®, .., sec,2@; sec,?, .., sec,’]
(path_cond A cond® A -cond®)



Approach #2: Product Programs

Path Condition:

if (publ < 10 && secret > 9) {

return pub2[secret];

1. int insecure_demo(in
2. if (publ > @) {
3.
4.
5.
6. Counterexample:
7 pUbl ==

) && secret? == 1
8. } && secretb == 0

Solve:
publ > ©
&& (publ < 10 && secret® > 0)
&& !(publ < 10 && secrett > 0)

/\/




Optimization: Concretization

e Issue: solver timeout on complex constraints
(usually after adding a complex branch condition)
e Solution: concretize all symbolic variables to one set of fixed values

when this happens
e Limitation: can only go down one path afterwards
o Future improvements: concretize only some of the symbolic variables or

concretize to multiple sets of values (concolic execution)



Optimization: Concretization

oo NO VT A WDN PR

. int insecure_demo(in

if (publ > 9) {

Path Condition:
publ > ©

if (publ < 10 && secret > 9) {
return pub2[secret];

}

return -1;

Execution continues
in one path

cret) {
Concretization:
publ == 1
&& secret == 1

/\/




Results/Discussion



Counterexamples from CtChecker

e CPU: Intel(R) Xeon(R) Platinum 8352Y @ 2.20GHz
e Command: klee --max-tests=64 --max-solver-time=10s --libc=uclibc --posix-runtime

e Running time: 7 hours

PP-TP (Confirmed/Found) | PP-FP (Visited/Found) SC
BearSSL 0.6 0/0 3/3 0
mbedTLS 3.2.1 3/4 17/26 2
Libgcrypt 1.10.1 0/6 8/26 N/A

PP-TP: true positives confirmed by product program/found by CtChecker
PP-FP: false positives visited by product program/found by CtChecker

SC: number of divergent path pairs with concrete public and symbolic secret
Fairly effective on mbedTLS (smaller), struggles with Libgcrypt (larger)



Limitations

Symbolic Execution:

e Path explosion
e Solver timeouts
e Difficulty modelling external calls

Cryptographic Libraries:

e Individual bit logic, bignums
e Libgcrypt, openssl, etc.
are much larger codebases

KLEE:
KLEE:

KLEE:
KLEE:

ERROR: openssl-1.1.1q/crypto/bn/bn_asm.c:239: Query timed out
NOTE: now ignoring this error at this location

ERROR: openssl-1.1.1q/crypto/bn/bn_asm.c:230: Query timed out
NOTE: now ignoring this error at this location



Future Work



Scalability Improvements

e Search heuristics: guide the exploration of paths towards target branches
e Solve constraints with different solvers simultaneously (e.g. STP + Z3)
e Program slicing: remove parts of the program irrelevant to target branches

1.a = 5;
2.b = a + a; Slice criteria (6, b)
3.if (b > @) { 1.a=>;
) — 2.b=a+a;
4. C = a,
3.d = b;
5. }
6.d = b;




Extensions and Applications

-Generalize input generation to
include memory-access-based
time violations

-applications In
quantifying/bounding leakage
of side channel vulnerabilities

if (secret % 2 == 0) {
return 1;

} else {
return 0;

}

Leaks 1 bit of secret

int ret = 0;
for (int i = 0; i < 32; i++) {
if ((secret >> i) & 1) {
ret++;
} else {
continue;

}
}

return ret;

Leaks all of secret




Summary

e CtChecker automatically finds security vulnerabilities, but without showing
how they occur

e Augment KLEE, a symbolic execution engine, to produce concrete inputs that
trigger secret-dependent control flow

e When encountering branch, see if both sides are simultaneously reachable
while keeping public inputs fixed

e Effectively finds most true positives on smaller cryptographic libraries; issues
with scalability

e To-do: parallelize constraint solvers, implement program slicing



	幻灯片 1: Automated Counterexample Generation for Side Channels
	幻灯片 2: Overview:
	幻灯片 3: Background
	幻灯片 4: Review: Constant Time (CT) Programming
	幻灯片 5: Review: CtChecker1
	幻灯片 6: Review: Symbolic Execution
	幻灯片 7: Project Objective
	幻灯片 8: Design/Implementation
	幻灯片 9: KLEE overview
	幻灯片 10: Approach #1: Self-Composition
	幻灯片 11: Approach #2: Product Programs
	幻灯片 12: Approach #2: Product Programs
	幻灯片 13: Optimization: Concretization 
	幻灯片 14: Optimization: Concretization
	幻灯片 15: Results/Discussion
	幻灯片 16: Counterexamples from CtChecker
	幻灯片 17: Limitations
	幻灯片 18: Future Work
	幻灯片 19: Scalability Improvements
	幻灯片 20: Extensions and Applications
	幻灯片 21: Summary

